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GRAPH THEORY AND THE PPP METHOD 

K. BALASUBRAMANIAN* 
Department of Chemistry, Arizona State University, Tempe, AZ 85287-1604, USA 

Abstract 

A graph theoretical formulation of the PPP method is presented. A weighted adjacency 
matrix of the PPP graph is given, wherein the off-diagonal elements are the bond orders. 
The automorphism group of the PPP graph is defined and shown to be isomorphic with 
the permutational subgroup of the permutation-inversion group of the molecule. It is 
demonstrated that the characteristic polynomial of the adjacency matrix of the PPP bond 
graph is invariant in every SCF iteration. It is shown that the PPP spectra discriminate 
isospectral graphs. 

1. In t roduc t ion  

It has been over thirty-five years since the Par i ser -Par r -Pople  method [1,2] 
has been formulated. Although the relationship between the Htickel theory of conjugated 
1r-electronic systems and chemical graph theory has now been very well established, 
it seems that the relationship between the PPP method and graph theory has not 
been explored, possibly due to the numerical complexity of the PPP method introduced 
by the electron repulsion integrals which are neglected in the HiJckel method. Yet 
there is an underlying graph-theoretical invariance in the PPP method. The author's 
attention was drawn to this topic as a result of a recent contribution he made to an 
issue of the International Journal of Quantum Chemistry dedicated to the PPP 
method [3]. 

The objective of the present article is to show that there are several possible 
graph-theoretical representations of the PPP method. It is shown that the characteristic 
polynomials of  PPP bond graphs obtained from the PPP bond orders are invariant 
to the actual changes in the PPP Hamiltonian matrix itself in each SCF iteration. 
It is further established that isospectral graphs can be discriminated based on the 
PPP Hamiltonian. The spectra of the bond matrices are, however, shown to be the 
same for all conjugated ~r-electronic graphs with the same number of vertices. Possible 
topological indices based on the PPP spectra are briefly considered. 
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2.1. 

Graph-theoretical formulations 

PRELIMINARIES 

The Par i se r -Par r -Pople  Hamiltonian [1,2] matrix element F~v is given by: 

1 F/~ = a/~ + ~- q~ ~ '~ ,  (1) 

F#v = ~pv  1 - v), (2) 

q~= ~,C~iNi, (3) 
i 

Pt.zv =  C iCviNi, (4) 
i 

where N i is the occupancy of the ith MO and Cui is the # th  coefficient of the ith 
MO. In the above expressions, Yuu and Yuv are two-electron repulsion integrals, qu 
and Puv are the charge density on center # and bond order between centers # and 
v, respectivcly. The a and 13 parameters are the well-known Htickel parameters. The 
7 integrals can be parameterizcd using a number of methods. One such common 
parameterization is the Nishimoto-Matanga parameterization. 

As is well known, in the PPP method one starts with the Htickel matrix. The 
eigenvectors  of the Htickel matrix are used to construct the charge densities (qu) 
and bond orders (Puv). These quantities are then used to construct the matrix elements 
of the F matrix. The F matrix is then diagonalized to obtain a new set of  eigenvectors. 
This process is repeated until the F matrix elements, eigenvalues and eigenvectors 
converge. Hence, it is clear that the PPP matrix is a geometry-dependent and 
parameter-dependent matrix. In each iteration, the PPP F matrix changes since qus 
and Puvs change. Yet there is an underlying graph-theoretical invariance in the PPP 
method, as shown here. 

There are a number of graph-theoretical representations of the PPP method. 
An obvious representation could use the PPP Hamiltonian matrix. This would generate 
a complete weighted graph on n vertices. The edges between centers i and j should 
be weighted by the matrix e l e m e n t  Fij. The diagonal elements could be incorporated 
as loops. 

Since the electron repulsion integrals in the PPP method bring in the difference 
between ordinary topological matrices and the PPP matrices, a logical graph-theoretical 
representation of  the PPP method would be to use the electron repulsion integrals 
('~j). In fig. 1, we show such a graph for butadine. Note that all electron repulsion 
integrals that are equal are given the same symbol. 
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Fig. 1. The PPP graph of butadine. 

2.2. THE AUTOMORPHISM GROUP OF THE PPP GRAPH 

The automorphism group of a graph in general is defined [4-7]  as a group 
consisting of permutations of vertices whose permutation matrices P satisfy 

p - l A p  = A, 

where A is the adjacency matrix of the graph. The topic of symmetry of graphs has 
received considerable attention for many years [5-8].  This can be extended to the 
PPP graph itself. The automorphism group of the weighted graph in fig. 1 can easily 
be seen to be S 2 = {(1)(2)(3)(4),(14)(23)}. The result of the permutation (14)(23) 
on the graph in fig. 1 is shown in fig. 2. It is evident that the automorphism group 

4 

2 

Fig. 2. The effect of a permutation in 
the automorphism group of the PPP graph. 

of the PPP ' /graph must contain only those permutations which are present in the 
permutat ion-inversion group representation of  the molecular symmetry group of 
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the molecule [9-12].  This follows from the definition of the 1, integrals which depend 
on the interatomic distances between the various centers of  the molecule under 
consideration. Since the interatomic distance matrix is invariant to the P I  group of 
the molecule, the PPP ?'matrix is also invariant to the permutations in the PI  group 
since there is a one-to-one correspondence between the PPP 1, integral matrix and 
the interatomic distance matrix. 

2.3. THE BOND MATRIX REPRESENTATION OF THE PPP HAMILTONIAN 

There is another interesting graph-theoretical representation of the PPP method. 
Two important quantities, namely, charge densities (qi) and bond order matrix elements 
(Pij)  emerge from the PPP method. Define a matrix 

0 if i = j ,  
PiJ = Pij i f  i ~ j ,  

where Pij is the bond-order between centers i and j. Note that the above matrix can 
be extended to heteronuclear compounds as well as by setting the diagonal elements 
tO 1 - qi fo r  the heteroatoms. 

Figure 3 shows the bond matrix graph of butadiene at the first PPP iteration, 
the second iteration and the final iteration using the Matanga-Nishimoto para- 
meterization with a = -11 .16 and t3 = -2 .39 values. All diagonal elements of the 
P matrix are set to zero for butadiene and hence not shown. 

I I I 
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3 3 3 

Fig. 3. The PPP bond matrix graph in the first, second 
and last iterations of the PPP method applied to butadiene. 

As seen from fig. 3, the PPP bond matrix graph is a weighted cyclic graph. 
The weights of edges (1, 2) and (3, 4) are the same due to symmetry, but the 
weights of (2, 3) and (1, 4) are equal in magnitude but opposite in sign. The PPP 
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method introduces negative bond orders between non-bonded atoms 1 and 4 to 
compensate for the delocalization between 2 and 3. This structure is preserved in 
every iteration, but the actual magnitudes change. 

In general, the PPP bond matrix is represented by a complete weighted graph. 
The edge weights are in general real numbers which numerically change in each 
step of the PPP method. Hence, it may appear as if this representation is not useful. 
However, in the next section we show that the characteristic polynomial of the PPP 
bond matrix is the same in every iteration. 

3. Characteristic polynomials of PPP bond matrix graphs 

The characteristic polynomial of the bond matrix P is defined as 

I P -  MI ,  

where P is the bond matrix defined before, and I is the n x n identity matrix if there 
are n verticcs in the PPP graph. It may be recalled that the ordinary characteristic 
polynomial of a graph is given by 

I A -  A.I[, 

where A is the adjacency matrix of the graph. 
The present author [13-16] has shown that characteristic polynomials of 

weighted graphs, directed graphs and signed graphs can be obtained easily using 
computer codes [14] developed based on Frame's method [13]. A computer code 
was developed to construct the PPP Hamiltonian matrix from the neighborhood 
table and the coordinates of the atoms in the graph. This was interfaced with the 
matrix diagonalization subroutines based on the Givens-Householder diagonalization 
procedure. From the eigenvectors thus obtained, the bond matrix was constructed. 
This was then fed to the codes developed by the author to compute the characteristic 
polynomials of weighted graphs. The bond matrices thus constructed were then 
used to obtain the new PPP Hamiltonian matrix. This process was iterated until 
convergence is obtained in the PPP Hamiltonian matrix and the PPP bond matrix. 
Finally, the code computes the characteristic polynomial of the converged PPP bond 
matrix. The codes thus assembled were tested on many graphs. The results obtained 
are discussed below. 

The ordinary characteristic polynomial of butadiene is given by 

Oh(A) = Z 4 - 3 Z  z + 1 .  

The characteristic polynomials of all three graphs in fig. 3 can be easily verified 
to be 

Ch(P) = Z 4 -  2 Z  2 + 1 = (Z  2 -  1) 2 . 
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Similarly, the ordinary characteristic polynomial and the PPP polynomial of octatetraene 
are given by 

Ch(A) = %8_7%6+ 15%4+ 1, 

Ch(P) = %8 _ 4%6 + 6%4 _ 4%2 + 1 = (%2 _ 1 ) 4 .  

The ordinary and PPP characteristic polynomials of naphthalene are given by 

Ch(A) = %1o_ 11%8 + 41%1.6 _ 65%4 + 43%t,2_ 9, 

Ch(P) = %10_ 5%8 + 10%6_ 10%4 + 5%2_ 1 = (%2_ 1)5. 

The ordinary and PPP polynomials of benzene are given by 

Ch(A)  = 116  _ 6%4 + 9%2 _ 4, 

Ch(P) = %6_  3Z4 + 3%2 _ 1 = (%2_  1)3. 

The PPP polynomials of numerous other conjugated molecules were calculated, 
including graphs containing heteroatoms. The characteristic polynomial of the PPP 
bond matrix was always found to be 

Ch(P) = (%2_ 1),/2, 

where n is the number of zr-electronic orbitals. Thus, it is evident that although the 
PPP matrix itself changes and is numerically complex in each iteration, the characteristic 
polynomial of the associated PPP bond matrix is invariant to each SCF iteration. 

It is evident from the characteristic polynomial of the PPP (bond matrix) 
graph that the eigenvalues of the bond matrix are + 1. A proof that the eigenvalues 
of the PPP bond matrix should always be + 1 can be easily found from the associated 
eigenvalues of the density matrix. The density matrix (D) of the PPP Hamiltonian 
can be defined as: 

t" 

D = ~ qi if i=j ,  
[ p~j i f  i ~ j. 

The eigenvalues of the density matrix (also known as the occupancies) are 0 or 2 
for closed-shell electronic states. The zero eigenvalues are for unoccupied orbitals, 
while occupied orbitals have density matrix eigenvalues of 2. Suppose d i is the ith 
eigenvalue of the D matrix. If Pi is the ith eigenvalue of  the bond matrix, then it 
can be easily seen that for non-heteronuclear molecules 

Pi = 1 - d i. 
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This relation follows from the fact that the diagonal elements qi are all unities for 
the D matrix of  conjugated hydrocarbons containing no heteroatoms. Thus, the 
eigenvalues of  the P matrix for which diagonal elements are zero are shifted by 
unity relative to the eigenvalues of  the D matrix. Hence, the characteristic polynomial 
of  the P matrix is (;t, 2 - 1) '/2 for an altemant hydrocarbon containing n atoms. 

4. Isospectral graphs and the PPP method 

There is considerable discussion in the literature on isospectral graphs [17-19] .  
Two graphs are said to be isospectral if  they give rise to the same spectra and 
characteristic polynomials.  It is also well recognized that the presence of  isospectral 
points in the graphs results in special problems in automorphism partitioning of  
vertices, chemical coding, and canonical labelling of  vertices [20-22] .  Thus, it would 
be interesting to see how far the PPP method discriminates isospectral graphs. 

Figure 4 shows two isospectral graphs. These two graphs have the same set 
of  Htickel eigenvalues. The PPP method was used to obtain their spectra. The 
converged orbital energies are shown in table 1 for the two graphs in fig. 4. As seen 

Fig. 4. Two isospectral graphs. Their PPP spectra are shown in table 1. 

Table 1 

The PPP spectra of the isospectral graphs (fig. 4) 

Graph Eigenvalues 

Fig. 4 (I) - 14.0261, - 12.4768, - 10.7452, - 10.5760, - 9.2437, 
- 2.5463, - 1.2140, - 1.0448, 0.6868,.2.2361 

- 14.0061, - 12.5646, - 10.6244, - 10.5654, - 9.2973, 
- 2.4926, - 1.2246, - 1.1656, 0.7746, 2.2162 

Fig. 4 (H) 
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from table 1, the converged spectra of the two isospectral graphs are sufficiently 
different to discriminate these graphs. Hence, Heilbronner's objection [23] that two 
isospectral graphs have sufficiently different photoelectron spectra is a result of the 
deficiency of the HiJckel theory, since it neglects the electron repulsive integrals. 
However, more realistic PPP spectra of these graphs are sufficiently different to 
correlate with the differences in the He(I) photoelectron spectra of the two molecules 
in fig. 4. Consequently, Heilbronner's criticism is not due to a defect in chemical 
graph theory, but to the neglect of important terms in the Hamiltonian on which 
ordinary graphs are based. 

It is interesting to note that the characteristic polynomials of the PPP bond 
matrices of both the graphs in fig. 4 are given by 

)t, 1° - 5 A  8 + 10)16 - 10)t 4 + 5)12  - 1 = ()12 _ 1 ) 5  

Although the bond order matrix elements of the two isospectral graphs in fig. 4 
differ considerably, the bond matrix characteristic polynomials are the same. 

5. St ructura l  discr iminators  based on the PPP method 

The PPP method could not only discriminate isospectral graphs but geometrical 
isomers as well, although the difference is somewhat subtle for the latter case. 
Figure 5 shows two geometrical isomers which are topologically identical. That is, 
their Htickel spectra and ordinary polynomials do not differ since, as ordinary 
graphs, the two structures in fig. 5 are the same. Table 2 shows the spectra of these 

Fig.  5. G e o m e t r i c a l  i s o m e r s  o f  two c o n j u g a t e d  h y d r o c a r b o n s .  

T a b l e  2 

T h e  P P P  e i g e n v a l u e s  o f  two g e o m e t r i c a l  i s o m e r s  (f ig .  5)  

I s o m e r  E i g e n v a l u e s  

Fig.  5 I (c is )  

Fig.  5 II ( t r ans )  

- 14 .0260,  - 12 .4773,  - 10 .7487 ,  - 10 .5705 ,  - 9 .2460 ,  

- 2 .5440 ,  - 1 . 2 1 9 5 , -  1 .0413,  0 .6873 ,  2 . 2 3 6 0  

- 14 .0261 ,  - 12 .4768,  - 1 0 . 7 4 5 2 , -  10 .5760,  - 9 .2437 ,  

- 2 . 55463 ,  - 1 .2140,  - 1 .0448,  0 .6868 ,  2 .2361  
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two structures. As seen from table 2, although the difference in the spectra is subtle, 
it corresponds to the "molecular similarity" of the two isomers. Hence, more realistic 
molecular similarity indices can be derived from PPP results. A few such possibilities 
are discussed below. 

A spectral difference index between two structures containing the same number 
of atoms can be defined as 

A : E  :II 
i 

The smaller the value of A, the more similar the two structures. On this basis then, 
A is 0.5854 for the two graphs in fig. 4, while it is 0.0238 for the two isomers in 
fig. 5. Consequently, A discriminates isospectral graphs, while it is small for geometrical 
isomers which are similar to each other (cis and trans). 

Other possible indices could be derived from the elements of the bond matrix 
and spectra. For example, indices P1, P2 and ,q, can be derived as follows: 

PI = I E P ~ v / N  1, 
\# ,v  

t'2 = ~ / N , 
\#,v 

• f l  ' 

where N is the number of atoms and the prime in the second sum is restricted to 
nearest-neighbors only. In the third expression, A. i is the ith eigenvalue, a and fl are 
the H~ckel parameters, while y is the y~  integral in the PPP method. This expression 
is for graphs containing no heteroatoms, although this can be easily modified for 
such graphs. The / ' 2  indices for the two isospectral graphs in fig. 4 are the same 
(0.6422). Thus, the two isospectral graphs are not discriminated by both P1 and P2. 
Hence, indices based on the actual spectra (for example, the ~ index) are better 
discriminators than the ones based on bond matrices. Many variations of such 
indices could be formulated, but the underlying philosophy is that the PPP method 
takes into account the actual geometry of a structure and is computationally inexpensive. 
Perhaps the PPP method and other semiempirical techniques should be suitably 
adapted to formulate more realistic topological indices. 
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